Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.596
Filtrar
1.
Environ Microbiol Rep ; 16(3): e13265, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747207

RESUMEN

Role of dust in Salmonella transmission on chicken farms is not well characterised. Salmonella Typhimurium (ST) infection of commercial layer chickens was investigated using a novel sprinkling method of chicken dust spiked with ST and the uptake compared to a conventional oral infection. While both inoculation methods resulted in colonisation of the intestines, the Salmonella load in liver samples was significantly higher at 7 dpi after exposing chicks to sprinkled dust compared to the oral infection group. Infection of chickens using the sprinkling method at a range of doses showed a threshold for colonisation of the gut and organs as low as 1000 CFU/g of dust. Caecal content microbiota analysis post-challenge showed that the profiles of chickens infected by the sprinkling and oral routes were not significantly different; however, both challenges induced differences when compared to the uninfected negative controls. Overall, the study showed that dust sprinkling was an effective way to experimentally colonise chickens with Salmonella and alter the gut microbiota than oral gavage at levels as low as 1000 CFU/g dust. This infection model mimics the field scenario of Salmonella infection in poultry sheds. The model can be used for future challenge studies for effective Salmonella control.


Asunto(s)
Pollos , Polvo , Microbioma Gastrointestinal , Enfermedades de las Aves de Corral , Salmonelosis Animal , Salmonella typhimurium , Animales , Pollos/microbiología , Salmonella typhimurium/crecimiento & desarrollo , Polvo/análisis , Salmonelosis Animal/microbiología , Salmonelosis Animal/prevención & control , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Ciego/microbiología , Hígado/microbiología
2.
Sci Rep ; 14(1): 10973, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744889

RESUMEN

In this study, we synthesized new series of 5-oxo-2-phenyl-4-(arylsulfamoyl)sulphenyl) hydrazono)-4,5-dihydro-1H-pyrrole-3-carboxylate hybrids 4a-f with the goal of overcoming sulfonamide resistance and identifying novel therapeutic candidates by chemical changes. The chemical structures of the synthesized hybrids were established over the spectroscopic tools. The frontier molecular orbitals configuration and energetic possessions of the synthesized compounds were discovered utilizing DFT/B3LYP/6-311++ G** procedure. The 3D plots of both HOMO and LUMO showed comparable configuration of both HOMO and LUMO led to close values of their energies. Amongst the prepared analogues, the sulfonamide hybrids 4a-f, hybrid 4a presented potent inhibitory towards S. typhimurium with (IZD = 15 mm, MIC = 19.24 µg/mL) and significant inhibition with (IZD = 19 mm, MIC = 11.31 µg/mL) against E.coli in contrast to sulfonamide (Sulfamethoxazole) reference Whereas, hybrid 4d demonstrated potent inhibition with (IZD = 16 mm, MIC = 19.24 µg/mL) against S. typhimurium with enhanced inhibition against E. Coli, Additionally, the generated sulfonamide analogues'' molecular docking was estimated over (PDB: 3TZF and 6CLV) proteins. Analogue 4e had the highest documented binding score as soon as linked to the other analogues. The docking consequences were fitting and addressed with the antibacterial valuation.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Pirroles , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Pirroles/química , Pirroles/farmacología , Pirroles/síntesis química , Salmonella typhimurium/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Modelos Moleculares , Relación Estructura-Actividad , Estructura Molecular
3.
Vet Med Sci ; 10(3): e1475, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739101

RESUMEN

BACKGROUND AND AIM: Different Salmonella serotypes are considered one of the most important food pathogens in the world. Poultry meat and eggs are the primary carriers of Salmonella in human populations. This study aimed to estimate the Salmonella enteritidis and Salmonella typhimurium contamination rates of retail hen and quail eggs in Karaj, Iran. Moreover, the antimicrobial resistance patterns of the strains were evaluated, and the efficiency of the standard culture method and multiplex polymerase chain reaction (m-PCR) were compared. MATERIALS AND METHODS: In this descriptive cross-sectional study over 1 year (Jan-Dec 2022), 150 commercial and 150 backyard hen eggs and 300 commercial quail eggs, without cracks and fractures, were collected randomly from best selling groceries in Karaj city. All samples were examined for Salmonella contamination independently by standard culture and m-PCR approaches. A standard disc diffusion method was employed to assess the antimicrobial susceptibility of the strains against 18 antimicrobial agents. RESULTS: Out of 300 examined eggs, 2 S. enteritidis strains were isolated from the shell of backyard hen eggs. The same serotype was also detected in the contents of one of these two eggs. One S. typhimurium was isolated from the shell of a commercial hen egg. Overall, the Salmonella contamination of the shell and contents was 1% and 0.3%, respectively. Salmonella was not isolated from the eggshells or the contents of the quail eggs. There was complete agreement between the results of m-PCR and the standard culture methods. Among the 18 tested antibiotics, the highest resistance was recorded for colistin (100%), followed by nalidixic acid (75%). CONCLUSION: As most Salmonella spp. are associated with human food poisoning, continuous surveillance is required to effectively reduce the risk posed by contaminated poultry eggs. Furthermore, mandatory monitoring of antimicrobial use on Iranian poultry farms is recommended.


Asunto(s)
Pollos , Huevos , Salmonella enteritidis , Salmonella typhimurium , Animales , Irán/epidemiología , Salmonella enteritidis/efectos de los fármacos , Salmonella enteritidis/aislamiento & purificación , Huevos/microbiología , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/aislamiento & purificación , Estudios Transversales , Prevalencia , Antibacterianos/farmacología , Codorniz/microbiología , Farmacorresistencia Bacteriana , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/epidemiología , Salmonelosis Animal/microbiología , Salmonelosis Animal/epidemiología
4.
Mikrochim Acta ; 191(6): 303, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709340

RESUMEN

A platform was designed based on Fe3O4 and CsPbBr3@SiO2 for integrated magnetic enrichment-fluorescence detection of Salmonella typhimurium, which significantly simplifies the detection process and enhances the working efficiency. Fe3O4 served as a magnetic enrichment unit for the capture of S. typhimurium. CsPbBr3@SiO2 was employed as a fluorescence-sensing unit for quantitative signal output, where SiO2 was introduced to strengthen the stability of CsPbBr3, improve its biomodificability, and prevent lead leakage. More importantly, the SiO2 shell shows neglectable absorption or scattering towards fluorescence, making the CsPbBr3@SiO2 exhibit a high quantum yield of 74.4%. After magnetic enrichment, the decreasing rate of the fluorescence emission intensity of the CsPbBr3@SiO2 supernatant at 527 nm under excitation light at UV 365 nm showed a strong linear correlation with S. typhimurium concentration of 1 × 102~1 × 108 CFU∙mL-1, and the limit of detection (LOD) reached 12.72 CFU∙mL-1. This platform has demonstrated outstanding stability, reproducibility, and resistance to interference, which provides an alternative for convenient and quantitative detection of S. typhimurium.


Asunto(s)
Colorantes Fluorescentes , Límite de Detección , Salmonella typhimurium , Dióxido de Silicio , Salmonella typhimurium/aislamiento & purificación , Dióxido de Silicio/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Plomo/química , Sistemas de Atención de Punto , Sulfuros/química , Nanopartículas de Magnetita/química , Humanos
5.
Microbiology (Reading) ; 170(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739436

RESUMEN

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Asunto(s)
Antibacterianos , Endopeptidasas , Glucanos , Polimixina B , Fagos de Salmonella , Endopeptidasas/farmacología , Endopeptidasas/química , Endopeptidasas/metabolismo , Polimixina B/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Fagos de Salmonella/genética , Fagos de Salmonella/fisiología , Fagos de Salmonella/química , Glucanos/química , Glucanos/farmacología , Animales , Pruebas de Sensibilidad Microbiana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/virología , Ratones , Salmonella typhimurium/virología , Salmonella typhimurium/efectos de los fármacos , Bacteriófagos/fisiología , Bacteriófagos/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/farmacología , Proteínas Virales/química
6.
Nat Microbiol ; 9(5): 1271-1281, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632342

RESUMEN

Bacterial chemotaxis requires bidirectional flagellar rotation at different rates. Rotation is driven by a flagellar motor, which is a supercomplex containing multiple rings. Architectural uncertainty regarding the cytoplasmic C-ring, or 'switch', limits our understanding of how the motor transmits torque and direction to the flagellar rod. Here we report cryogenic electron microscopy structures for Salmonella enterica serovar typhimurium inner membrane MS-ring and C-ring in a counterclockwise pose (4.0 Å) and isolated C-ring in a clockwise pose alone (4.6 Å) and bound to a regulator (5.9 Å). Conformational differences between rotational poses include a 180° shift in FliF/FliG domains that rotates the outward-facing MotA/B binding site to inward facing. The regulator has specificity for the clockwise pose by bridging elements unique to this conformation. We used these structures to propose how the switch reverses rotation and transmits torque to the flagellum, which advances the understanding of bacterial chemotaxis and bidirectional motor rotation.


Asunto(s)
Proteínas Bacterianas , Quimiotaxis , Microscopía por Crioelectrón , Flagelos , Salmonella typhimurium , Flagelos/ultraestructura , Flagelos/fisiología , Flagelos/metabolismo , Salmonella typhimurium/ultraestructura , Salmonella typhimurium/fisiología , Salmonella typhimurium/metabolismo , Salmonella typhimurium/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Rotación , Modelos Moleculares , Sitios de Unión , Torque , Conformación Proteica , Proteínas de la Membrana
7.
Vet Med Sci ; 10(3): e1445, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38652025

RESUMEN

BACKGROUND: This study aimed to evaluate the antimicrobial effects of zahter extract, zahter essential oil, laurel extract, and laurel essential oil on Salmonella Typhimurium inoculated on chicken wings. METHODS: A total of 10 groups, including eight study groups and two control groups were formed, consisting of zahter extract and zahter essential oil and laurel extract and laurel essential oil in different proportions. In the study, laurel extract at 6.4% and 12.8% concentrations, laurel essential oil at 0.2% and 0.4% concentrations, zahter extract at 0.2% and 0.4% concentrations, and zahter essential oil at 0.2% and 0.4% concentrations were used. RESULTS: The broth microdilution method was used to evaluate the antimicrobial activity of the extract and essential oils on the S. Typhimurium. Minimum inhibitory concentrations of the extracts and essential oils used in the study against S. Typhimurium were determined. The highest inhibitory effect on S. Typhimurium was observed in the 0.4% laurel essential oil group. It was determined that the inhibitory effect increased as the concentration of laurel essential oil increased. In addition, the antimicrobial activity of zahter essential oil is less inhibitory than the laurel extract, laurel essential oil, and zahter extract. CONCLUSION: According to the results of this study, it has been revealed that extracts and essential oils obtained from zahter and laurel plants, which have been shown to be natural antimicrobial, can be used in foods as an alternative to chemical additives. To develop research results, the applicability of these extracts and essential oils in different foodstuffs should be examined using different ingredients and concentrations.


Asunto(s)
Pollos , Aceites Volátiles , Extractos Vegetales , Salmonella typhimurium , Alas de Animales , Animales , Salmonella typhimurium/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Alas de Animales/efectos de los fármacos , Enfermedades de las Aves de Corral/microbiología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Laurus/química , Aceites de Plantas/farmacología , Aceites de Plantas/química , Antiinfecciosos/farmacología
8.
Open Vet J ; 14(1): 200-213, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633162

RESUMEN

Background: Salmonella has become one of the hazards prevalent foodborne pathogens causing different diseases in chickens. However, Salmonella typhimurium (ST), a nonhost-specific serovar, is a major avian agent that causes severe disturbance in young chicken wellness. Aim: The occurrence of Salmonella in chickens and their antimicrobial resistance were explored in this study. In addition, the immune response of 1-day-old broiler chicks, against multidrug resistant (MDR) ST infection, was also assessed at 4 and 24 hours post infection (pi) in the cecum and spleen, representing their mucosal and systemic immune responses, respectively. Methods: A total of 375 samples from 130 diseased and apparently healthy broiler and layer chickens were randomly collected for Salmonella isolation, identification, and resistance profile evaluation, from farms and different clinical laboratories. The immune response of 1-day-old broiler chicks, Ross 308, against in-vivo ST infection was ascertained through the evaluation of heterophile phagocytosis and s expression of cytokines, immunoglobulin A and other immune-regulating genes in the cecum and spleen. Twenty-four, 1-day-old nonvaccinated broiler chicks were used and divided into two groups. The chicks in the infected group were orally inoculated with 0.5 ml of 2 × 108 colony forming units (CFU)/ml of MDR ST suspension, while those in the control group were taken nutrient broth. Results: Seven out of 130 (5.38%) examined chickens were positive for Salmonella. All isolates (100%) were resistant to amoxicillin-clavulanic acid (AMC), cefazolin (CZ), cefoxitin (FOX), ciprofloxacin (CIP), nalidixic acid (NA), tetracycline (TE), fosfomycin (FOS), and colistin (CT) with multiple antimicrobial resistances (MARs) index range of 0.72-0.83, where none of them was resistant to meropenem (MEM). The results of immune response revealed that chicks infected with ST showed significantly different phagocytosis percentages and index values compared to controls. According to the real-time quantitative polymerase chain reaction (RT-qPCR) results, the transcription of IL-8, iNOS, IL-18, IgA, and IFN-γ for chicks infected by ST showed a significantly increased trend (p < 0.01) with increasing chicken age and was higher in the cecum than spleen compared to controls (p < 0.05) during 24 hours after infection. Conclusion: The findings indicated a strong mucosal immune response in the chicks after the ST challenge, which reflects humoral and cellular responses. Our insight recommended the occurrence of a natural immune response stimulator at 1 day age to face the infection, and this can prevent the resistance transfer, with efficient control measures.


Asunto(s)
Antiinfecciosos , Salmonella typhimurium , Animales , Salmonella typhimurium/fisiología , Citocinas , Pollos , Óxido Nítrico , Inmunoglobulina A
9.
Open Vet J ; 14(1): 274-283, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633164

RESUMEN

Background: Salmonella-related foodborne illnesses are a significant public health concern. Naturally, antibacterial food components have been shown to limit microbial growth proliferation with various degrees of efficacy. Aims: To examine the occurrence, microbial load, and effect of apple vinegar on Salmonella serovars in beef and beef products. Methods: 150 beef and beef products were collected between March and May 2022. Total viable count (TVC), Enterobacteriaceae count (ENT), isolation and identification of Salmonella, and their virulence factors detection by multiplex PCR were determined, and an experimental study of the effect of natural apple vinegar marination on Salmonella spp. Results: TVC was higher in meatballs (3.32 × 106 ± 1.07 × 106) while beef burgers (4.22 × 103 ± 0.71 × 103) had the highest ENT. Concerning the prevalence of Salmonella spp., meatball (46.7%) and beef burger (25.3%) samples were the highest contamination rate. The common serovars detected were Salmonella typhimurium (6%), Salmonella enteritidis (6%), and Salmonella infantis (4%). Based on the results of PCR, 12, 11, and 11 out of 18 samples of Salmonella isolates possess hila, stn, and invA genes. By immersing the inoculated steak meat in apple vinegar at different concentrations (50%, 70%, and 100%), the initial populations of the Salmonella strains after 12 hours were reduced to 0.38 × 102 ± 0.05 × 102 log CFU/ml; however, after 48 hours become the most reduction (0.31 × 102 ± 0.07 × 102 log CFU/ml) at a concentration of 100% apple vinegar. An enhancement in the sensory attributes was noted across all concentrations. Conclusion: The consumed beef and beef products are contaminated with pathogenic bacteria such as Salmonella spp. Marinades made using apple vinegar concentrations of 50%, 75%, and 100% effectively minimized the prevalence of artificially inoculated Salmonella and extended the shelf life of preserved refrigerated beef products to 48 hours.


Asunto(s)
Ácido Acético , Malus , Bovinos , Animales , Microbiología de Alimentos , Recuento de Colonia Microbiana/veterinaria , Antibacterianos , Salmonella typhimurium/genética
10.
ACS Synth Biol ; 13(4): 1093-1099, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38593047

RESUMEN

RNA synthetic biology tools have primarily been applied in E. coli; however, many other bacteria are of industrial and clinical significance. Thus, the multicolor fluorogenic aptamer Pepper was evaluated in both Gram-positive and Gram-negative bacteria. Suitable HBC-Pepper dye pairs were identified that give blue, green, or red fluorescence signals in the E. coli, Bacillus subtilis, and Salmonella enterica serovar Typhimurium (S. Typhimurium). Furthermore, we found that different RNA scaffolds have a drastic effect on in vivo fluorescence, which did not correlate with the in vitro folding efficiency. One such scaffold termed DF30-tRNA displays 199-fold greater fluorescence than the Pepper aptamer alone and permits simultaneous dual color imaging in live cells.


Asunto(s)
Aptámeros de Nucleótidos , ARN , Escherichia coli/genética , Antibacterianos , Bacterias Gramnegativas/genética , Bacterias Grampositivas , Salmonella typhimurium/genética , Aptámeros de Nucleótidos/genética
11.
Nat Commun ; 15(1): 3187, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622116

RESUMEN

Transcription is crucial for the expression of genetic information and its efficient and accurate termination is required for all living organisms. Rho-dependent termination could rapidly terminate unwanted premature RNAs and play important roles in bacterial adaptation to changing environments. Although Rho has been discovered for about five decades, the regulation mechanisms of Rho-dependent termination are still not fully elucidated. Here we report that Rof is a conserved antiterminator and determine the cryogenic electron microscopy structure of Rho-Rof antitermination complex. Rof binds to the open-ring Rho hexamer and inhibits the initiation of Rho-dependent termination. Rof's N-terminal α-helix undergoes conformational changes upon binding with Rho, and is key in facilitating Rof-Rho interactions. Rof binds to Rho's primary binding site (PBS) and excludes Rho from binding with PBS ligand RNA at the initiation step. Further in vivo analyses in Salmonella Typhimurium show that Rof is required for virulence gene expression and host cell invasion, unveiling a physiological function of Rof and transcription termination in bacterial pathogenesis.


Asunto(s)
Factor Rho , Factores de Transcripción , Factores de Transcripción/metabolismo , Virulencia/genética , Factor Rho/genética , Factor Rho/metabolismo , Regulación Bacteriana de la Expresión Génica , Transcripción Genética , Bacterias/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
12.
Nat Commun ; 15(1): 3120, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600106

RESUMEN

Salmonella utilizes a type 3 secretion system to translocate virulence proteins (effectors) into host cells during infection1. The effectors modulate host cell machinery to drive uptake of the bacteria into vacuoles, where they can establish an intracellular replicative niche. A remarkable feature of Salmonella invasion is the formation of actin-rich protuberances (ruffles) on the host cell surface that contribute to bacterial uptake. However, the membrane source for ruffle formation and how these bacteria regulate membrane mobilization within host cells remains unclear. Here, we show that Salmonella exploits membrane reservoirs for the generation of invasion ruffles. The reservoirs are pre-existing tubular compartments associated with the plasma membrane (PM) and are formed through the activity of RAB10 GTPase. Under normal growth conditions, membrane reservoirs contribute to PM homeostasis and are preloaded with the exocyst subunit EXOC2. During Salmonella invasion, the bacterial effectors SipC, SopE2, and SopB recruit exocyst subunits from membrane reservoirs and other cellular compartments, thereby allowing exocyst complex assembly and membrane delivery required for bacterial uptake. Our findings reveal an important role for RAB10 in the establishment of membrane reservoirs and the mechanisms by which Salmonella can exploit these compartments during host cell invasion.


Asunto(s)
Infecciones por Salmonella , Salmonella typhimurium , Humanos , Salmonella typhimurium/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Salmonella/microbiología , Membrana Celular/metabolismo , Membranas/metabolismo , Células HeLa
13.
Food Microbiol ; 121: 104519, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637081

RESUMEN

Currently, fresh, unprocessed food has become a relevant element of the chain of transmission of enteropathogenic infections. To survive on a plant surface and further spread the infections, pathogens like Salmonella have to attach stably to the leaf surface. Adhesion, driven by various virulence factors, including the most abundant fim operon encoding type 1 fimbriae, is usually an initial step of infection, preventing physical removal of the pathogen. Adhesion properties of Salmonella's type 1 fimbriae and its FimH adhesin were investigated intensively in the past. However, there is a lack of knowledge regarding its role in interaction with plant cells. Understanding the mechanisms and structures involved in such interaction may facilitate efforts to decrease the risk of contamination and increase fresh food safety. Here, we applied Salmonella genome site-directed mutagenesis, adhesion assays, protein-protein interactions, and biophysics methods based on surface plasmon resonance to unravel the role of FimH adhesin in interaction with spinach leaves. We show that FimH is at least partially responsible for Salmonella binding to spinach leaves, and this interaction occurs in a mannose-independent manner. Importantly, we identified a potential FimH receptor as endo-1,3-ß-d-Glucanase and found that this interaction is strong and specific, with a dissociation constant in the nanomolar range. This research advances our comprehension of Salmonella's interactions with plant surfaces, offering insights that can aid in minimizing contamination risks and improving the safety of fresh, unprocessed foods.


Asunto(s)
Manosa , Salmonella typhimurium , Salmonella typhimurium/genética , Manosa/metabolismo , Spinacia oleracea , Proteínas Fimbrias/genética , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Adhesinas Bacterianas/genética , Adhesión Bacteriana/genética
14.
Food Microbiol ; 121: 104517, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637079

RESUMEN

Food preservatives are crucial in controlling microbial growth in processed foods to maintain food safety. Bacterial biofilms pose a threat in the food chain by facilitating persistence on a range of surfaces and food products. Cells in a biofilm are often highly tolerant of antimicrobials and can evolve in response to antimicrobial exposure. Little is known about the efficacy of preservatives against biofilms and their potential impact on the evolution of antimicrobial resistance. In this study we investigated how Salmonella enterica serovar Typhimurium responded to subinhibitory concentrations of four food preservatives (sodium chloride, potassium chloride, sodium nitrite or sodium lactate) when grown planktonically and in biofilms. We found that each preservative exerted a unique selective pressure on S. Typhimurium populations. There was a trade-off between biofilm formation and growth in the presence of three of the four preservatives, where prolonged preservative exposure resulted in reduced biofilm biomass and matrix production over time. All three preservatives selected for mutations in global stress response regulators rpoS and crp. There was no evidence for any selection of cross-resistance to antibiotics after preservative exposure. In conclusion, we showed that preservatives affect biofilm formation and bacterial growth in a compound specific manner. We showed trade-offs between biofilm formation and preservative tolerance, but no antibiotic cross-tolerance. This indicates that bacterial adaptation to continuous preservative exposure, is unlikely to affect food safety or contribute to antibiotic resistance.


Asunto(s)
Antiinfecciosos , Salmonella typhimurium , Conservantes de Alimentos/farmacología , Biopelículas , Antibacterianos/farmacología , Bacterias
15.
Biosensors (Basel) ; 14(4)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38667162

RESUMEN

The peroxidase-like behaviors of gold nanoparticles (AuNPs) have the potential to the development of rapid and sensitive colorimetric assays for specific food ingredients and contaminants. Here, using NaBH4 as a reducing agent, AuNPs with a supramolecular macrocyclic compound ß-cyclodextrin (ß-CD) capped were synthesized under alkaline conditions. Monodispersal of ß-CD@AuNPs possessed a reduction in diameter size and performed great peroxidase-like activities toward both substrates, H2O2 and TMB. In the presence of H2O2, the color change of TMB oxidization to oxTMB was well-achieved using ß-CD@AuNPs as the catalyst, which was further employed to develop colorimetric assays for ascorbic acid, with a limit of detection as low as 0.2 µM in ddH2O. With the help of the host-guest interaction between ß-CD and adamantane, AuNPs conjugated with nanobodies to exhibit peroxidase-like activities and specific recognition against Salmonella Typhimurium simultaneously. Based on this bifunctional bioprobe, a selective and sensitive one-step colorimetric assay for S. Typhimurium was developed with a linear detection from 8.3 × 104 to 2.6 × 108 CFU/mL and can be provided to spiked lettuce with acceptable recoveries of 97.31% to 103.29%. The results demonstrated that the excellent peroxidase-like behaviors of ß-CD@AuNPs can be applied to develop a colorimetric sensing platform in the food industry.


Asunto(s)
Ácido Ascórbico , Colorimetría , Oro , Nanopartículas del Metal , beta-Ciclodextrinas , Nanopartículas del Metal/química , beta-Ciclodextrinas/química , Oro/química , Técnicas Biosensibles , Peroxidasa , Peróxido de Hidrógeno , Salmonella typhimurium , Salmonella , Límite de Detección
16.
Genes (Basel) ; 15(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38674370

RESUMEN

Salmonella typhimurium (S. typhimurium), a prevalent cause of foodborne infection, induces significant changes in the host transcriptome and metabolome. The lack of therapeutics with minimal or no side effects prompts the scientific community to explore alternative therapies. This study investigates the therapeutic potential of a probiotic mixture comprising Lactobacillus acidophilus (L. acidophilus 1.3251) and Lactobacillus plantarum (L. plantarum 9513) against S. typhimurium, utilizing transcriptome and metabolomic analyses, a novel approach that has not been previously documented. Twenty-four SPF-BALB/c mice were divided into four groups: control negative group (CNG); positive control group (CPG); probiotic-supplemented non-challenged group (LAPG); and probiotic-supplemented Salmonella-challenged group (LAPST). An RNA-sequencing analysis of small intestinal (ileum) tissue revealed 2907 upregulated and 394 downregulated DEGs in the LAPST vs. CPG group. A functional analysis of DEGs highlighted their significantly altered gene ontology (GO) terms related to metabolism, gut integrity, cellular development, and immunity (p ≤ 0.05). The KEGG analysis showed that differentially expressed genes (DEGs) in the LAPST group were primarily involved in pathways related to gut integrity, immunity, and metabolism, such as MAPK, PI3K-Akt, AMPK, the tryptophan metabolism, the glycine, serine, and threonine metabolism, ECM-receptor interaction, and others. Additionally, the fecal metabolic analysis identified 1215 upregulated and 305 downregulated metabolites in the LAPST vs. CPG group, implying their involvement in KEGG pathways including bile secretion, propanoate metabolism, arginine and proline metabolism, amino acid biosynthesis, and protein digestion and absorption, which are vital for maintaining barrier integrity, immunity, and metabolism. In conclusion, these findings suggest that the administration of a probiotic mixture improves immunity, maintains gut homeostasis and barrier integrity, and enhances metabolism in Salmonella infection.


Asunto(s)
Lactobacillus plantarum , Ratones Endogámicos BALB C , Probióticos , Salmonella typhimurium , Transcriptoma , Animales , Probióticos/farmacología , Probióticos/administración & dosificación , Ratones , Lactobacillus acidophilus , Metaboloma , Metabolómica/métodos , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/genética , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/metabolismo , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Salmonelosis Animal/genética , Salmonelosis Animal/metabolismo , Femenino , Microbioma Gastrointestinal/efectos de los fármacos
17.
Biochemistry (Mosc) ; 89(3): 574-582, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648774

RESUMEN

Rabies is a zoonotic disease with high lethality. Most human deaths are associated with the bites received from dogs and cats. Vaccination is the most effective method of preventing rabies disease in both animals and humans. In this study, the ability of an adjuvant based on recombinant Salmonella typhimurium flagellin to increase protective activity of the inactivated rabies vaccine in mice was evaluated. A series of inactivated dry culture vaccine for dogs and cats "Rabikan" (strain Shchelkovo-51) with addition of an adjuvant at various dilutions were used. The control preparation was a similar series of inactivated dry culture vaccine without an adjuvant. Protective activity of the vaccine preparations was evaluated by the NIH potency test, which is the most widely used and internationally recommended method for testing effectiveness of the inactivated rabies vaccines. The value of specific activity of the tested rabies vaccine when co-administered with the adjuvant was significantly higher (48.69 IU/ml) than that of the vaccine without the adjuvant (3.75 IU/ml). Thus, recombinant flagellin could be considered as an effective adjuvant in the composition of future vaccine preparations against rabies virus.


Asunto(s)
Adyuvantes Inmunológicos , Flagelina , Vacunas Antirrábicas , Rabia , Vacunas de Productos Inactivados , Vacunas Antirrábicas/inmunología , Vacunas Antirrábicas/administración & dosificación , Animales , Flagelina/inmunología , Ratones , Rabia/prevención & control , Rabia/inmunología , Vacunas de Productos Inactivados/inmunología , Perros , Virus de la Rabia/inmunología , Salmonella typhimurium/inmunología , Femenino , Gatos
18.
Redox Biol ; 72: 103151, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593631

RESUMEN

Salmonella infection entails a cascade of attacks and defence measures. After breaching the intestinal epithelial barrier, Salmonella is phagocytosed by macrophages, where the bacteria encounter multiple stresses, to which it employs relevant countermeasures. Our study shows that, in Salmonella, the polyamine spermidine activates a stress response mechanism by regulating critical antioxidant genes. Salmonella Typhimurium mutants for spermidine transport and synthesis cannot mount an antioxidative response, resulting in high intracellular ROS levels. These mutants are also compromised in their ability to be phagocytosed by macrophages. Furthermore, it regulates a novel enzyme in Salmonella, Glutathionyl-spermidine synthetase (GspSA), which prevents the oxidation of proteins in E. coli. Moreover, the spermidine mutants and the GspSA mutant show significantly reduced survival in the presence of hydrogen peroxide in vitro and reduced organ burden in the mouse model of Salmonella infection. Conversely, in macrophages isolated from gp91phox-/- mice, we observed a rescue in the attenuated fold proliferation previously observed upon infection. We found that Salmonella upregulates polyamine biosynthesis in the host through its effectors from SPI-1 and SPI-2, which addresses the attenuated proliferation observed in spermidine transport mutants. Thus, inhibition of this pathway in the host abrogates the proliferation of Salmonella Typhimurium in macrophages. From a therapeutic perspective, inhibiting host polyamine biosynthesis using an FDA-approved chemopreventive drug, D, L-α-difluoromethylornithine (DFMO), reduces Salmonella colonisation and tissue damage in the mouse model of infection while enhancing the survival of infected mice. Therefore, our work provides a mechanistic insight into the critical role of spermidine in stress resistance of Salmonella. It also reveals a bacterial strategy in modulating host metabolism to promote their intracellular survival and shows the potential of DFMO to curb Salmonella infection.


Asunto(s)
Proteínas Bacterianas , Macrófagos , Proteínas de la Membrana , NADPH Oxidasa 2 , Especies Reactivas de Oxígeno , Salmonella typhimurium , Espermidina , Animales , Salmonella typhimurium/metabolismo , Salmonella typhimurium/efectos de los fármacos , Espermidina/metabolismo , Ratones , Macrófagos/microbiología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Poliaminas/metabolismo , Fagocitosis/efectos de los fármacos , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/metabolismo , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , Interacciones Huésped-Patógeno , Espermidina Sintasa/metabolismo , Espermidina Sintasa/genética , Estrés Oxidativo/efectos de los fármacos
19.
Avian Dis ; 68(1): 18-24, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38687103

RESUMEN

The application of live attenuated Salmonella Typhimurium vaccines has significantly helped control Salmonella in poultry products. Because the U.S. Department of Agriculture-Food Safety Inspection Service (USDA-FSIS) scores all Salmonella as positive, regardless of serovar, attenuated vaccine strains that are identified at processing contribute negatively toward Salmonella performance standards. This study was designed to determine the incidence of a live attenuated Salmonella serovar Typhimurium vaccine identified in broiler products by FSIS and to develop a PCR assay for screening of isolates. Salmonella Typhimurium short-read sequences from broiler samples uploaded to the National Center for Biotechnology Information (NCBI) Pathogen Detection database by the USDA-FSIS from 2016 to 2022 were downloaded and assembled. These were analyzed using the Basic Local Alignment Search Tool (BLAST) with a sequence unique to field strains, followed by a sequence unique to the vaccine strain. The PCR assays were developed against field and vaccine strains by targeting transposition events in the crp and cya genes and validated by screening Salmonella serovar Typhimurium isolates. Between 2016 and 2022, 1708 Salmonella Typhimurium isolates of chicken origin were found in the NCBI Pathogen Detection database, corresponding to 7.99% of all Salmonella identified. Of these, 104 (5.97%) were identified as the vaccine strain. The PCR assay differentiated field strains from the vaccine strain when applied to isolates and was also able to detect the vaccine strain from DNA isolated from mixed serovar overnight Salmonella enrichment cultures. Live attenuated Salmonella vaccines are a critical preharvest tool for Salmonella control and are widely used in industry. With forthcoming regulations that will likely focus on Salmonella Typhimurium, along with other serovars, there is a need to distinguish between isolates belonging to the vaccine strain and those that are responsible for causing human illness.


Detección in silico y por PCR de una cepa vacunal viva atenuada de Salmonella Typhimurium. La aplicación de vacunas vivas atenuadas contra Salmonella Typhimurium ha ayudado significativamente a controlar Salmonella en productos avícolas. Debido a que el Servicio de Inspección de Seguridad Alimentaria del Departamento de Agricultura de los Estados Unidos. (USDA-FSIS) califica todas las Salmonella como positivas, independientemente del serovar. Las cepas atenuadas de la vacuna que se identifican en el procesamiento contribuyen negativamente a los estándares de desempeño de Salmonella. Este estudio fue diseñado para determinar la incidencia de una vacuna viva atenuada de Salmonella serovar Typhimurium identificada en productos de pollo de engorde por el FSIS y para desarrollar un ensayo de PCR para la detección de aislados. Se recolectaron y ensamblaron secuencias de lectura corta de Salmonella Typhimurium de muestras de pollos de engorde introducidas en la plataforma de detección de patógenos del Centro Nacional de Información Biotecnológica (NCBI) por el USDA-FSIS entre los años 2016 al 2022. Estos se analizaron utilizando la herramienta de búsqueda de alineación local básica con una secuencia exclusiva para las cepas de campo, seguida de una secuencia exclusiva para la cepa vacunal. Los ensayos de PCR se desarrollaron contra cepas de campo y vacunales centrándose en eventos de transposición en los genes crp y cya y se validaron mediante la detección de aislados de Salmonella serovar Typhimurium. Entre 2016 y 2022, se encontraron 1708 aislados de Salmonella Typhimurium de origen avícola en el sistema de detección de patógenos del NCBI, lo que corresponde al 7.99 % de todas las Salmonellas identificadas. De ellas, 104 (5.97%) fueron identificadas como cepa vacunal. El ensayo de PCR diferenció las cepas de campo de la cepa de la vacuna cuando se aplicó a los aislados y también fue capaz de detectar la cepa de la vacuna a partir del ADN aislado de cultivos de enriquecimiento por toda la noche de Salmonella con serovares mixtos. Las vacunas vivas atenuadas contra Salmonella son una herramienta fundamental para el control de Salmonella y se utilizan ampliamente en la industria. Con las próximas regulaciones que probablemente se centrarán en Salmonella Typhimurium, junto con otros serovares, es necesario distinguir entre los aislados que pertenecen a la cepa vacunal y los que son responsables de causar enfermedades humanas.


Asunto(s)
Pollos , Reacción en Cadena de la Polimerasa , Enfermedades de las Aves de Corral , Salmonelosis Animal , Vacunas contra la Salmonella , Salmonella typhimurium , Vacunas Atenuadas , Salmonella typhimurium/genética , Salmonella typhimurium/aislamiento & purificación , Vacunas Atenuadas/inmunología , Animales , Vacunas contra la Salmonella/inmunología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/prevención & control , Salmonelosis Animal/microbiología , Reacción en Cadena de la Polimerasa/veterinaria , Simulación por Computador
20.
PLoS Biol ; 22(4): e3002597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38684033

RESUMEN

Intestinal epithelial cells (IECs) play pivotal roles in nutrient uptake and in the protection against gut microorganisms. However, certain enteric pathogens, such as Salmonella enterica serovar Typhimurium (S. Tm), can invade IECs by employing flagella and type III secretion systems (T3SSs) with cognate effector proteins and exploit IECs as a replicative niche. Detection of flagella or T3SS proteins by IECs results in rapid host cell responses, i.e., the activation of inflammasomes. Here, we introduce a single-cell manipulation technology based on fluidic force microscopy (FluidFM) that enables direct bacteria delivery into the cytosol of single IECs within a murine enteroid monolayer. This approach allows to specifically study pathogen-host cell interactions in the cytosol uncoupled from preceding events such as docking, initiation of uptake, or vacuole escape. Consistent with current understanding, we show using a live-cell inflammasome reporter that exposure of the IEC cytosol to S. Tm induces NAIP/NLRC4 inflammasomes via its known ligands flagellin and T3SS rod and needle. Injected S. Tm mutants devoid of these invasion-relevant ligands were able to grow in the cytosol of IECs despite the absence of T3SS functions, suggesting that, in the absence of NAIP/NLRC4 inflammasome activation and the ensuing cell death, no effector-mediated host cell manipulation is required to render the epithelial cytosol growth-permissive for S. Tm. Overall, the experimental system to introduce S. Tm into single enteroid cells enables investigations into the molecular basis governing host-pathogen interactions in the cytosol with high spatiotemporal resolution.


Asunto(s)
Proteínas de Unión al Calcio , Citosol , Flagelina , Interacciones Huésped-Patógeno , Inflamasomas , Salmonella typhimurium , Sistemas de Secreción Tipo III , Citosol/metabolismo , Citosol/microbiología , Animales , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Inflamasomas/metabolismo , Ratones , Flagelina/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/genética , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Ratones Endogámicos C57BL , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Análisis de la Célula Individual/métodos , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA